Small-amplitude steady water waves with critical layers: Non-symmetric waves

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

The problem for two-dimensional steady water waves with vorticity is considered. Using methods of spatial dynamics, we reduce the problem to a finite dimensional Hamiltonian system. The reduced system describes all small-amplitude solutions of the problem and, as an application, we give a proof of the existence of non-symmetric steady water waves whenever the number of roots of the dispersion equation is greater than one.

Detaljer

Författare
  • V. Kozlov
  • E. Lokharu
Enheter & grupper
Externa organisationer
  • Linköping University
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Matematisk analys
Originalspråkengelska
Sidor (från-till)4170-4191
TidskriftJournal of Differential Equations
Volym267
Utgivningsnummer7
Tidigt onlinedatum2019
StatusPublished - 2019
PublikationskategoriForskning
Peer review utfördJa