Spatial patterns of gene expression in the extramatrical mycelium and mycorrhizal root tips formed by the ectomycorrhizal fungus Paxillus involutus in association with birch (Betula pendula) seedlings in soil microcosms

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Standard

Harvard

APA

CBE

MLA

Vancouver

Author

RIS

TY - JOUR

T1 - Spatial patterns of gene expression in the extramatrical mycelium and mycorrhizal root tips formed by the ectomycorrhizal fungus Paxillus involutus in association with birch (Betula pendula) seedlings in soil microcosms

AU - Wright, Derek

AU - Johansson, Tomas

AU - Le Quéré, Antoine

AU - Söderström, Bengt

AU - Tunlid, Anders

PY - 2005

Y1 - 2005

N2 - (.)Functional compartmentation of the extramatrical mycelium of ectomycorrhizal (ECM) fungi is considered important for the operation of ECM associations, although the molecular basis is poorly characterized. (.)Global gene expression profiles of mycelium colonizing an ammonium sulphate ((NH4)(2)SO4) nutrient patch, rhizomorphs and ECM root tips of the Betula pendula-Paxillus involutus association were compared by cDNA microarray analysis. (.)The expression profiles of rhizomorphs and nutrient patch mycelium were similar to each other but distinctly different from that of mycorrhizal tips. Statistical analyses revealed 337 of 1075 fungal genes differentially regulated among these three tissues. Clusters of genes exhibiting distinct expression patterns within specific tissues were identified. Genes implicated in the glutamine synthetase/glutamate synthase (GS/GOGAT) and urea cycles, and the provision of carbon skeletons for ammonium assimilation via beta-oxidation and the glyoxylate cycle, were highly expressed in rhizomorph and nutrient patch mycelium. Genes implicated in vesicular transport, cytoskeleton organization and morphogenesis and protein degradation were also differentially expressed. (.)Differential expression of genes among the extramatrical mycelium and mycorrhizal tips indicates functional specialization of tissues forming ECM associations. (c) New Phytologist ( 2005).

AB - (.)Functional compartmentation of the extramatrical mycelium of ectomycorrhizal (ECM) fungi is considered important for the operation of ECM associations, although the molecular basis is poorly characterized. (.)Global gene expression profiles of mycelium colonizing an ammonium sulphate ((NH4)(2)SO4) nutrient patch, rhizomorphs and ECM root tips of the Betula pendula-Paxillus involutus association were compared by cDNA microarray analysis. (.)The expression profiles of rhizomorphs and nutrient patch mycelium were similar to each other but distinctly different from that of mycorrhizal tips. Statistical analyses revealed 337 of 1075 fungal genes differentially regulated among these three tissues. Clusters of genes exhibiting distinct expression patterns within specific tissues were identified. Genes implicated in the glutamine synthetase/glutamate synthase (GS/GOGAT) and urea cycles, and the provision of carbon skeletons for ammonium assimilation via beta-oxidation and the glyoxylate cycle, were highly expressed in rhizomorph and nutrient patch mycelium. Genes implicated in vesicular transport, cytoskeleton organization and morphogenesis and protein degradation were also differentially expressed. (.)Differential expression of genes among the extramatrical mycelium and mycorrhizal tips indicates functional specialization of tissues forming ECM associations. (c) New Phytologist ( 2005).

U2 - 10.1111/j.1469-8137.2005.01441.x

DO - 10.1111/j.1469-8137.2005.01441.x

M3 - Article

VL - 167

SP - 579

EP - 596

JO - New Phytologist

T2 - New Phytologist

JF - New Phytologist

SN - 1469-8137

IS - 2

ER -