The family II carbohydrate-binding module of xylanase CflXyn11A from Cellulomonas flavigena increases the synergy with cellulase TrCel7B from Trichoderma reesei during the hydrolysis of sugar cane bagasse.

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift


Synergy between Cellulomonas flavigena xylanase CflXyn11A and Trichoderma reesei endoglucanase TrCel7B was assessed during hydrolysis of alkaline pretreated sugar cane bagasse (SCB) after 12-48h, applying the individual enzymes and mixtures of the enzymes. A high degree of synergy (6.3) between CflXyn11A and TrCel7B in hydrolysis of SCB was observed after 12h in the equimolar mixture. A threefold decrease in the degree of synergy was observed with TrCel7B and the catalytic module of CflXyn11A; suggesting an important role played by the carbohydrate-binding module of CflXyn11A (CflXyn11A-CBM) in the observed synergy. Affinity electrophoresis and binding assays showed that CflXyn11A-CBM binds to xylans and to a lesser extent to cellulose. Our results suggest that synergy is more pronounced at early stages of hydrolysis. Furthermore, for the first time it is described that a CBM carried by a xylanase significantly enhances the synergy with a cellulase (threefold increase in synergy).


  • Patricia Pavon Orozco
  • Alejandro Santiago-Hernández
  • Anna Rosengren
  • María Eugenia Hidalgo-Lara
  • Henrik Stålbrand
Enheter & grupper

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Biologiska vetenskaper
Sidor (från-till)622-630
TidskriftBioresource Technology
StatusPublished - 2012
Peer review utfördJa