The influence of emulsion parameters on physical stability and rheological properties of Pickering emulsions stabilized by hordein nanoparticles

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

In this study, the effect of pH (3–8), ionic strength (I, 0.01–1 M), protein particle concentration (C, 0.5%–2%), and dispersed phase volume fraction (Φ, 0.25–0.8) on the efficacy of hordein-based colloidal nanoparticles in the stabilization of Pickering structures was investigated. Colloidal particles were synthesized via anti-solvent method. Depending on pH and I, the average size and zeta-potential of hordein particles ranged from 425 to around 4000 nm, and +27.5 to −15.63 mV, respectively. The intense aggregation of particles at pH close to isoelectric point and also at high I led to poor formation and stability of Pickering emulsions. The overrun value was influenced by various emulsion parameters. At pH 3, triphasic (with the overrun value of 75%) and high internal phase (HIP) emulsions with an average droplet size of 15.6–86.7 μm were formed at Φ 0.25 and 0.8, respectively. At Φ 0.5 and 0.8, an elastic gel-like behavior (i.e., storage modulus (G′) > loss modulus (G″)) was observed over the applied frequency range. At Φ 0.25, a predominant viscous character (G">G′) was observed at low frequencies; while, at higher frequencies, G′ exceeded G″ due to the foam collapse. The morphology was studied by optical microscopy and confocal laser scanning microscopy (CLSM). Monitoring the physical stability using static multiple light scattering (MLS) revealed three destabilization profiles of foam-like, emulsion-foam and gel-like structures. The results of this study might help in designing triphasic Pickering systems (using plant-based proteins) and developing solid-like structured vegetable oils from the gel-like HIP emulsions.

Detaljer

Författare
Enheter & grupper
Externa organisationer
  • Shiraz University
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Livsmedelsvetenskap

Nyckelord

Originalspråkengelska
Artikelnummer105520
TidskriftFood Hydrocolloids
Volym101
StatusPublished - 2020
PublikationskategoriForskning
Peer review utfördJa