The influence of lifestyle on airborne particle surface area doses received by different Western populations

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Standard

The influence of lifestyle on airborne particle surface area doses received by different Western populations. / Pacitto, A.; Stabile, L.; Moreno, TMC; Kumar, P.; Wierzbicka, A.; Morawska, L.; Buonanno, G.

I: Environmental Pollution, Vol. 232, 01.2018, s. 113-122.

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Harvard

APA

CBE

MLA

Vancouver

Author

Pacitto, A. ; Stabile, L. ; Moreno, TMC ; Kumar, P. ; Wierzbicka, A. ; Morawska, L. ; Buonanno, G. / The influence of lifestyle on airborne particle surface area doses received by different Western populations. I: Environmental Pollution. 2018 ; Vol. 232. s. 113-122.

RIS

TY - JOUR

T1 - The influence of lifestyle on airborne particle surface area doses received by different Western populations

AU - Pacitto, A.

AU - Stabile, L.

AU - Moreno, TMC

AU - Kumar, P.

AU - Wierzbicka, A.

AU - Morawska, L.

AU - Buonanno, G.

PY - 2018/1

Y1 - 2018/1

N2 - In the present study, the daily dose in terms of particle surface area received by citizens living in five cities in Western countries, characterized by different lifestyle, culture, climate and built-up environment, was evaluated and compared. For this purpose, the exposure to sub-micron particle concentration levels of the population living in Barcelona (Spain), Cassino (Italy), Guilford (United Kingdom), Lund (Sweden), and Brisbane (Australia) was measured through a direct exposure assessment approach. In particular, measurements of the exposure at a personal scale were performed by volunteers (15 per each population) that used a personal particle counter for different days in order to obtain exposure data in microenvironments/activities they resided/performed. Non-smoking volunteers performing non-industrial jobs were considered in the study.Particle concentration data allowed obtaining the exposure of the population living in each city. Such data were combined in a Monte Carlo method with the time activity pattern data characteristics of each population and inhalation rate to obtain the most probable daily dose in term of particle surface area as a function of the population gender, age, and nationality.The highest daily dose was estimated for citizens living in Cassino and Guilford (>1000 mm2), whereas the lowest value was recognized for Lund citizens (around 100 mm2). Indoor air quality, and in particular cooking and eating activities, was recognized as the main influencing factor in terms of exposure (and thus dose) of the population: then confirming that lifestyle (e.g. time spent in cooking activities) strongly affect the daily dose of the population. On the contrary, a minor or negligible contribution of the outdoor microenvironments was documented.

AB - In the present study, the daily dose in terms of particle surface area received by citizens living in five cities in Western countries, characterized by different lifestyle, culture, climate and built-up environment, was evaluated and compared. For this purpose, the exposure to sub-micron particle concentration levels of the population living in Barcelona (Spain), Cassino (Italy), Guilford (United Kingdom), Lund (Sweden), and Brisbane (Australia) was measured through a direct exposure assessment approach. In particular, measurements of the exposure at a personal scale were performed by volunteers (15 per each population) that used a personal particle counter for different days in order to obtain exposure data in microenvironments/activities they resided/performed. Non-smoking volunteers performing non-industrial jobs were considered in the study.Particle concentration data allowed obtaining the exposure of the population living in each city. Such data were combined in a Monte Carlo method with the time activity pattern data characteristics of each population and inhalation rate to obtain the most probable daily dose in term of particle surface area as a function of the population gender, age, and nationality.The highest daily dose was estimated for citizens living in Cassino and Guilford (>1000 mm2), whereas the lowest value was recognized for Lund citizens (around 100 mm2). Indoor air quality, and in particular cooking and eating activities, was recognized as the main influencing factor in terms of exposure (and thus dose) of the population: then confirming that lifestyle (e.g. time spent in cooking activities) strongly affect the daily dose of the population. On the contrary, a minor or negligible contribution of the outdoor microenvironments was documented.

KW - Airborne particle dose

KW - Diffusion charger particle counters

KW - Lung-deposited surface area

KW - Personal monitoring

U2 - 10.1016/j.envpol.2017.09.023

DO - 10.1016/j.envpol.2017.09.023

M3 - Article

VL - 232

SP - 113

EP - 122

JO - Environmental Pollution

T2 - Environmental Pollution

JF - Environmental Pollution

SN - 0269-7491

ER -