The solvability of pseudo-differential operators

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceeding

Abstract

We give a new proof of the Nirenberg-Treves conjecture: that local solvability of principal type pseudodifferential operators is equivalent to condition (Psi). This condition rules out sign changes from - to + of the imaginary part of the principal symbol along the oriented bicharacteristics of the real part. We obtain local solvability by proving a localizable a priori estimate for the adjoint operator with a loss of arbitrary more than 3/2 derivatives (compared with the elliptic case).

Detaljer

Författare
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Matematik

Nyckelord

Originalspråkengelska
Titel på värdpublikation[Host publication title missing]
RedaktörerFerruccio Colombini, Ludovico Pernazza
FörlagPubbl. Cent. Ric. Mat. Ennio Giorgi
Sidor175-200
Antal sidor26
Volym1
ISBN (tryckt)88-7642-150-5
StatusPublished - 2004
PublikationskategoriForskning
Peer review utfördJa
EvenemangPhase space analysis of partial differential equations - Centro di Ricerca Matematica Ennio de Giorgi, Pisa
Varaktighet: 0001 jan 2 → …

Publikationsserier

Namn
Volym1

Konferens

KonferensPhase space analysis of partial differential equations
Period0001/01/02 → …