Thermo-mechanical modeling of polymer spur gears with experimental validation using high-speed infrared thermography

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift


The presented work is focused on the development of a comprehensive thermo-mechanical model for predicting the temperature rise in thermoplastic polymer spur gears with any desired profile geometry while running. The specific constitutional behavior of thermoplastics influences the gear-meshing pattern, which can deviate substantially from ideal gear meshing, as typically exhibited by metal gears in moderate-loading conditions. Taking this aspect into account is of paramount importance if realistic temperature-rise predictions are to be made. The thermal response of the considered gear pair is studied thoroughly from both the analytical and experimental standpoints. Good agreement was found be- tween the results of the model and the experimental measurements performed using a high-speed thermal imaging infrared camera, although it was also observed that the real- life temperature rise can increase noticeably if large geometric tolerance deviations from the ideal profile geometry are present. The presented experimental approach also offers the possibility to observe the temperature rise inside and outside the meshing cycle.


Externa organisationer
  • University of Ljubljana

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Tillförlitlighets- och kvalitetsteknik
Sidor (från-till)1-22
Antal sidor22
TidskriftMechanism and Machine Theory
Utgåva nummer4
StatusPublished - 2020 apr 15
Peer review utfördJa
Externt publiceradJa


Ingen tillgänglig data