Transverse instability of periodic and generalized solitary waves for a fifth-order KP model

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

We consider a fifth-order Kadomtsev–Petviashvili equation which arises as a two-dimensional model in the classical water-wave problem. This equation possesses a family of generalized line solitary waves which decay exponentially to periodic waves at infinity. We prove that these solitary waves are transversely spectrally unstable and that this instability is induced by the transverse instability of the periodic tails. We rely upon a detailed spectral analysis of some suitably chosen linear operators.

Detaljer

Författare
Enheter & grupper
Externa organisationer
  • University of Burgundy - Franche-Comté
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Matematik

Nyckelord

Originalspråkengelska
Sidor (från-till)3235-3249
Antal sidor15
TidskriftJournal of Differential Equations
Volym262
Utgivningsnummer4
StatusPublished - 2017 feb 15
PublikationskategoriForskning
Peer review utfördJa