Two-dimensional acoustic particle focusing enables sheathless chip Coulter counter with planar electrode configuration.

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift


title = "Two-dimensional acoustic particle focusing enables sheathless chip Coulter counter with planar electrode configuration.",
abstract = "The field of cytometry has grown in scope and importance ever since the early 20th century with leaps in technology introducing the Coulter counter and the flow cytometer. Cytometry methods have brought about a revolution for the medical and biotechnology industry by providing fast and accurate analysis of cell and particle suspensions. Recent developments in the field aim at improving current cytometers and to provide miniaturized low-cost cytometry systems for point-of-care clinical diagnostics or research. In an attempt to address the need for particle positioning which is important for both impedance and optically based cytometers we present a microfluidic system which precisely positions cells and particles, using acoustic forces and subsequently performs measurements using an integrated and simple planar electrode Coulter-type impedance cytometer without the need for sheath flows. Data is presented to show how the acoustic method improves the accuracy of the impedance cytometer when prefocusing is employed to particles and cells (diluted whole blood). Confocal imaging and simulations support the findings and provide the basis for further improvements. The acoustophoretic prefocusing technique opens a path towards small, low cost cytometers while also providing an easy way to improve current systems.",
author = "Carl Grenvall and Christian Antfolk and Bisgaard, {Christer Zoffmann} and Thomas Laurell",
year = "2014",
doi = "10.1039/c4lc00982g",
language = "English",
volume = "14",
pages = "4629--4637",
journal = "Lab on a Chip - Miniaturisation for Chemistry and Biology",
issn = "1473-0189",
publisher = "Royal Society of Chemistry",
number = "24",