Vision in the dimmest habitats on Earth

Forskningsoutput: TidskriftsbidragÖversiktsartikel

Standard

Vision in the dimmest habitats on Earth. / Warrant, Eric.

I: Journal of Comparative Physiology A, Vol. 190, Nr. 10, 2004, s. 765-789.

Forskningsoutput: TidskriftsbidragÖversiktsartikel

Harvard

APA

CBE

MLA

Vancouver

Author

RIS

TY - JOUR

T1 - Vision in the dimmest habitats on Earth

AU - Warrant, Eric

PY - 2004

Y1 - 2004

N2 - A very large proportion of the world's animal species are active in dim light, either under the cover of night or in the depths of the sea. The worlds they see can be dim and extended, with light reaching the eyes from all directions at once, or they can be composed of bright point sources, like the multitudes of stars seen in a clear night sky or the rare sparks of bioluminescence that are visible in the deep sea. The eye designs of nocturnal and deep-sea animals have evolved in response to these two very different types of habitats, being optimised for maximum sensitivity to extended scenes, or to point sources, or to both. After describing the many visual adaptations that have evolved across the animal kingdom for maximising sensitivity to extended and point-source scenes, I then use case studies from the recent literature to show how these adaptations have endowed nocturnal animals with excellent vision. Nocturnal animals can see colour and negotiate dimly illuminated obstacles during flight. They can also navigate using learned terrestrial landmarks, the constellations of stars or the dim pattern of polarised light formed around the moon. The conclusion from these studies is clear: nocturnal habitats are just as rich in visual details as diurnal habitats are, and nocturnal animals have evolved visual systems capable of exploiting them. The same is certainly true of deep-sea animals, as future research will no doubt reveal.

AB - A very large proportion of the world's animal species are active in dim light, either under the cover of night or in the depths of the sea. The worlds they see can be dim and extended, with light reaching the eyes from all directions at once, or they can be composed of bright point sources, like the multitudes of stars seen in a clear night sky or the rare sparks of bioluminescence that are visible in the deep sea. The eye designs of nocturnal and deep-sea animals have evolved in response to these two very different types of habitats, being optimised for maximum sensitivity to extended scenes, or to point sources, or to both. After describing the many visual adaptations that have evolved across the animal kingdom for maximising sensitivity to extended and point-source scenes, I then use case studies from the recent literature to show how these adaptations have endowed nocturnal animals with excellent vision. Nocturnal animals can see colour and negotiate dimly illuminated obstacles during flight. They can also navigate using learned terrestrial landmarks, the constellations of stars or the dim pattern of polarised light formed around the moon. The conclusion from these studies is clear: nocturnal habitats are just as rich in visual details as diurnal habitats are, and nocturnal animals have evolved visual systems capable of exploiting them. The same is certainly true of deep-sea animals, as future research will no doubt reveal.

KW - compound eye

KW - camera eye

KW - nocturnal vision

KW - deep-sea vision

KW - visual

KW - ecology

U2 - 10.1007/s00359-004-0546-z

DO - 10.1007/s00359-004-0546-z

M3 - Review article

VL - 190

SP - 765

EP - 789

JO - Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology

JF - Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology

SN - 1432-1351

IS - 10

ER -