Om du gjort några ändringar i Pure kommer de visas här snart.

Personlig profil


Gabrielle Flood is a postdoctoral researcher at the Division for Computer Vision and Machine Learning at the Centre for Mathematical Sciences, Lund University, where she also defended her Ph.D. in applied mathematics in 2021. The topic of her thesis was “Mapping and Merging Using Sound and Vision - Automatic Calibration and Map Fusion with Statistical Deformations”. Prior to this, she received a M.Sc. in applied mathematics in 2016, also from the Faculty of Engineering at Lund University.

Gabrielles research interests concern image analysis in general and geometric problems in computer vision in particular. Currently, her research is mainly focusing on positioning and robust estimation of 3D reconstructions from different sensor modalities - such as images and audio - and efficient merging of such reconstructions.  

Ämnesklassifikation (UKÄ)

  • Geometri
  • Datorseende och robotik (autonoma system)


Utforska forskningsämnen där Gabrielle Flood är aktiv. Dessa ämnesetiketter kommer från personens arbeten. Tillsammans bildar de ett unikt fingeravtryck.
  • 1 Liknande profiler

Samarbeten och ledande forskningsområden under de senaste fem åren

Externa samarbeten med länder/områden de senaste 5 åren