A Bayesian Network analysis of the probabilistic relations between risk factors in the predisposition to type 2 diabetes

Francesco Sambo, Barbara Di Camillo, Alberto Franzin, Andrea Facchinetti, Liisa Hakaste, Jasmina Kravic, Giuseppe Fico, Jaakko Tuomilehto, Leif Groop, Rafael Gabriel, Tiinamaija Tuomi, Claudio Cobelli

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

In order to better understand the relations between different risk factors in the predisposition to type 2 diabetes, we present a Bayesian Network analysis of a large dataset, composed of three European population studies. Our results show, together with a key role of metabolic syndrome and of glucose after 2 hours of an Oral Glucose Tolerance Test, the importance of education, measured as the number of years of study, in the predisposition to type 2 diabetes.

Originalspråkengelska
Titel på värdpublikation2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Sidor2119-22
Volym2015
ISBN (elektroniskt)978-1-4244-9271-8
DOI
StatusPublished - 2015
Evenemang37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) - Milan, Italien
Varaktighet: 2015 aug. 252015 aug. 29

Publikationsserier

NamnAnnual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings
FörlagIEEE--Institute of Electrical and Electronics Engineers Inc.
ISSN (tryckt)1557-170X

Konferens

Konferens37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Land/TerritoriumItalien
OrtMilan
Period2015/08/252015/08/29

Ämnesklassifikation (UKÄ)

  • Endokrinologi och diabetes
  • Folkhälsovetenskap, global hälsa, socialmedicin och epidemiologi

Fingeravtryck

Utforska forskningsämnen för ”A Bayesian Network analysis of the probabilistic relations between risk factors in the predisposition to type 2 diabetes”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här