A convergent overlapping domain decomposition method for total variation minimization

Massimo Fornasier, Andreas Langer, Carola Bibiane Schönlieb

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

In this paper we are concerned with the analysis of convergent sequential and parallel overlapping domain decomposition methods for the minimization of functionals formed by a discrepancy term with respect to the data and a total variation constraint. To our knowledge, this is the first successful attempt of addressing such a strategy for the nonlinear, nonadditive, and nonsmooth problem of total variation minimization. We provide several numerical experiments, showing the successful application of the algorithm for the restoration of 1D signals and 2D images in interpolation/inpainting problems, respectively, and in a compressed sensing problem, for recovering piecewise constant medical-type images from partial Fourier ensembles.

Originalspråkengelska
Sidor (från-till)645-685
Antal sidor41
TidskriftNumerische Mathematik
Volym116
Nummer4
DOI
StatusPublished - 2010
Externt publiceradJa

Bibliografisk information

Copyright:
Copyright 2010 Elsevier B.V., All rights reserved.

Ämnesklassifikation (UKÄ)

  • Beräkningsmatematik

Fingeravtryck

Utforska forskningsämnen för ”A convergent overlapping domain decomposition method for total variation minimization”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här