A Convex Approach to Low Rank Matrix Approximation with Missing Data

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

Many computer vision problems can be formulated as low rank bilinear minimization problems. One reason for the success of these problem is that they can be efficiently solved using singular value decomposition. However this approach fails if the measurement matrix contains missing data. In this paper we propose a new method for estimating missing data. Our approach is similar to that of L-1 approximation schemes that have been successfully used for recovering sparse solutions of under-determined linear systems. We use the nuclear norm to formulate a convex approximation of the missing data problem. The method has been tested on real and synthetic images with promising results.
Originalspråkengelska
Titel på värdpublikationImage Analysis, Proceedings
FörlagSpringer
Sidor301-309
Volym5575
DOI
StatusPublished - 2009
Evenemang16th Scandinavian Conference on Image Analysis - Oslo, Norge
Varaktighet: 2009 juni 152009 juni 18

Publikationsserier

Namn
Volym5575
ISSN (tryckt)1611-3349
ISSN (elektroniskt)0302-9743

Konferens

Konferens16th Scandinavian Conference on Image Analysis
Land/TerritoriumNorge
OrtOslo
Period2009/06/152009/06/18

Ämnesklassifikation (UKÄ)

  • Matematik

Fingeravtryck

Utforska forskningsämnen för ”A Convex Approach to Low Rank Matrix Approximation with Missing Data”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här