A Full Space-Time Convergence Order Analysis of Operator Splittings for Linear Dissipative Evolution Equations

Eskil Hansen, Erik Henningsson

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

The Douglas-Rachford and Peaceman-Rachford splitting methods are common choices for temporal discretizations of evolution equations. In this paper we combine these methods with spatial discretizations fulfilling some easily verifiable criteria. In the setting of linear dissipative evolution equations we prove optimal convergence orders, simultaneously in time and space. We apply our abstract results to dimension splitting of a 2D diffusion problem, where a finite element method is used for spatial discretization. To conclude, the convergence results are illustrated with numerical experiments.
Originalspråkengelska
Sidor (från-till)1302-1316
Antal sidor15
TidskriftCommunications in Computational Physics
Volym19
Nummer5
DOI
StatusPublished - 2016 maj

Ämnesklassifikation (UKÄ)

  • Beräkningsmatematik

Fingeravtryck

Utforska forskningsämnen för ”A Full Space-Time Convergence Order Analysis of Operator Splittings for Linear Dissipative Evolution Equations”. Tillsammans bildar de ett unikt fingeravtryck.
  • Erik Henningsson

    Eskil Hansen (Första/primär/huvudhandledare)

    20112016

    Aktivitet: Examination och handledarskapHandledning av forskarstuderande

Citera det här