A generalized method for proving polynomial calculus degree lower bounds

Mladen Mikša, Jakob Nordström

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

We study the problem of obtaining lower bounds for polynomial calculus (PC) and polynomial calculus resolution (PCR) on proof degree, and hence by [Impagliazzo et al. '99] also on proof size. [Alekhnovich and Razborov'03] established that if the clause-variable incidence graph of a CNF formula F is a good enough expander, then proving that F is unsatisfiable requires high PC/PCR degree. We further develop the techniques in [AR03] to show that if one can "cluster" clauses and variables in a way that "respects the structure" of the formula in a certain sense, then it is sufficient that the incidence graph of this clustered version is an expander. As a corollary of this, we prove that the functional pigeonhole principle (FPHP) formulas require high PC/PCR degree when restricted to constant-degree expander graphs. This answers an open question in [Razborov'02], and also implies that the standard CNF encoding of the FPHP formulas require exponential proof size in polynomial calculus resolution. Thus, while Onto-FPHP formulas are easy for polynomial calculus, as shown in [Riis'93], both FPHP and Onto-PHP formulas are hard even when restricted to bounded-degree expanders.

Originalspråkengelska
Titel på värdpublikation30th Conference on Computational Complexity, CCC 2015
RedaktörerDavid Zuckerman
FörlagSchloss Dagstuhl - Leibniz-Zentrum für Informatik
Sidor467-487
Antal sidor21
ISBN (elektroniskt)9783939897811
DOI
StatusPublished - 2015 juni 1
Externt publiceradJa
Evenemang30th Conference on Computational Complexity, CCC 2015 - Portland, USA
Varaktighet: 2015 juni 172015 juni 19

Publikationsserier

NamnLeibniz International Proceedings in Informatics, LIPIcs
FörlagSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Volym33
ISSN (tryckt)1868-8969

Konferens

Konferens30th Conference on Computational Complexity, CCC 2015
Land/TerritoriumUSA
OrtPortland
Period2015/06/172015/06/19

Ämnesklassifikation (UKÄ)

  • Datavetenskap (datalogi)

Fingeravtryck

Utforska forskningsämnen för ”A generalized method for proving polynomial calculus degree lower bounds”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här