Projekt per år
Sammanfattning
Massive MIMO is a promising technology to connect very large numbers of energy constrained nodes, as it offers both extensive spatial multiplexing and large array gain. A challenge resides in partitioning the many nodes in groups that can communicate simultaneously such that the mutual interference is minimized. We here propose node partitioning strategies that do not require full channel state information, but rather are based on nodes' respective directional channel properties. In our considered scenarios, these typically have a time constant that is far larger than the coherence time of the channel. We developed both an optimal and an approximation algorithm to partition users based on directional channel properties, and evaluated them numerically. Our results show that both algorithms, despite using only these directional channel properties, achieve similar performance in terms of the minimum signal-to-interference-plus-noise ratio for any user, compared with a reference method using full channel knowledge. In particular, we demonstrate that grouping nodes with related directional properties is to be avoided. We hence realise a simple partitioning method requiring minimal information to be collected from the nodes, and where this information typically remains stable over a long term, thus promoting their autonomy and energy efficiency.
Originalspråk | engelska |
---|---|
Antal sidor | 13 |
Tidskrift | IEEE Transactions on Communications |
Status | Submitted - 2020 maj 11 |
Bibliografisk information
Submitted for publication to the IEEE Transactions on Wireless CommunicationsÄmnesklassifikation (UKÄ)
- Kommunikationssystem
- Signalbehandling
Fingeravtryck
Utforska forskningsämnen för ”A Light Signalling Approach to Node Grouping for Massive MIMO IoT Networks”. Tillsammans bildar de ett unikt fingeravtryck.-
Sec4Factory: Cybersäkerhet för nästa gererations fabrik
Gehrmann, C., Kihl, M., Hell, M., Fitzgerald, E., Toorani, M., Fitzgerald, E., Tärneberg, W. & Akbarian, F.
Stiftelsen för Strategisk Forskning, SSF
2018/04/01 → 2023/03/31
Projekt: Forskning
-
Massive Mimo Technology and Applications
Tufvesson, F., Edfors, O., Andreani, P., Liu, L., Törmänen, M., Sjöland, H., Tataria, H., Attari, M., Ghotbi, I., Muneer, S., Behmanesh, B., Gannedahl, R., Tan, S. & Rodríguez Sánchez, J.
2018/02/01 → 2022/01/31
Projekt: Uppdragsforskning