A Non-convex Relaxation for Fixed-Rank Approximation

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

This paper considers the problem of finding a low rank matrix from observations of linear combinations of its elements. It is well known that if the problem fulfills a restricted isometry property (RIP), convex relaxations using the nuclear norm typically work well and come with theoretical performance guarantees. On the other hand these formulations suffer from a shrinking bias that can severely degrade the solution in the presence of noise. In this theoretical paper we study an alternative non-convex relaxation that in contrast to the nuclear norm does not penalize the leading singular values and thereby avoids this bias. We show that despite its non-convexity the proposed formulation will in many cases have a single stationary point if a RIP holds. Our numerical tests show that our approach typically converges to a better solution than nuclear norm based alternatives even in cases when the RIP does not hold.

Originalspråkengelska
Titel på värdpublikationProceedings - 2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Sidor1809-1817
Antal sidor9
Volym2018-January
ISBN (elektroniskt)9781538610343
DOI
StatusPublished - 2018 jan. 19
Evenemang16th IEEE International Conference on Computer Vision Workshops, ICCVW 2017 - Venice, Italien
Varaktighet: 2017 okt. 222017 okt. 29

Konferens

Konferens16th IEEE International Conference on Computer Vision Workshops, ICCVW 2017
Land/TerritoriumItalien
OrtVenice
Period2017/10/222017/10/29

Ämnesklassifikation (UKÄ)

  • Beräkningsmatematik

Fingeravtryck

Utforska forskningsämnen för ”A Non-convex Relaxation for Fixed-Rank Approximation”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här