A Novel Joint Points and Silhouette-Based Method to Estimate 3D Human Pose and Shape

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingForskningPeer review

Sammanfattning

This paper presents a novel method for 3D human pose and shape estimation from images with sparse views, using joint points and silhouettes, based on a parametric model. Firstly, the parametric model is fitted to the joint points estimated by deep learning-based human pose estimation. Then, we extract the correspondence between the parametric model of pose fitting and silhouettes in 2D and 3D space. A novel energy function based on the correspondence is built and minimized to fit a parametric model to the silhouettes. Our approach uses comprehensive shape information because the energy function of silhouettes is built from both 2D and 3D space. This also means that our method only needs images from sparse views, which balances data used and the required prior information. Results on synthetic data and real data demonstrate the competitive performance of our approach on pose and shape estimation of the human body.
Originalspråkengelska
Titel på gästpublikationPattern Recognition. ICPR International Workshops and Challenges. ICPR 2021
FörlagSpringer
Sidor41-56
ISBN (tryckt)978-3-030-68762-5
DOI
StatusPublished - 2021

Publikationsserier

Namn Lecture Notes in Computer Science
FörlagSpringer
Volym12661
ISSN (elektroniskt)1611-3349

Ämnesklassifikation (UKÄ)

  • Datavetenskap (datalogi)
  • Datorseende och robotik (autonoma system)

Fingeravtryck

Utforska forskningsämnen för ”A Novel Joint Points and Silhouette-Based Method to Estimate 3D Human Pose and Shape”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här