A primal-dual finite element method for scalar and vectorial total variation minimization

Stephan Hilb, Andreas Langer, Martin Alkämper

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

Based on the Fenchel duality we build a primal-dual framework for minimizing a general functional consisting of a combined L1 and L2 data-fidelity term and a scalar or vectorial total variation regularisation term. The minimization is performed over the space of functions of bounded variations and appropriate discrete subspaces. We analyze the existence and uniqueness of solutions of the respective minimization problems. For computing a numerical solution we derive a semi-smooth Newton method on finite element spaces and highlight applications in denoising, inpainting and optical flow estimation.
Originalspråkengelska
Artikelnummer24
Antal sidor33
TidskriftJournal of Scientific Computing
Volym96
Nummer1
DOI
StatusPublished - 2023

Ämnesklassifikation (UKÄ)

  • Beräkningsmatematik

Fingeravtryck

Utforska forskningsämnen för ”A primal-dual finite element method for scalar and vectorial total variation minimization”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här