Projekt per år
Sammanfattning
This work explores the use of reinforcement learning to design a proactive cloud resource auto-scaler that is able to predict usage across a distributed microservice application. The focus is on serving time-sensitive workloads, e.g., industrial automation, connected XR/VR (eXtended Reality/Virtual Reality), etc., where each job has a deadline and there is some cost associated with missing a deadline. A simple workload model, as well as a microservice application model, is presented. A reinforcement learning agent is trained to identify workloads and predict needed utilization for identified service chains. The results are compared to standard purely reactive techniques.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | UCC '22: Proceedings of the 15th IEEE/ACM International Conference on Utility and Cloud Computing |
Sidor | 213-220 |
Antal sidor | 8 |
ISBN (elektroniskt) | 9781665460873 |
DOI | |
Status | Published - 2022 |
Evenemang | 15th ACM-IEEE International Conference on Formal Methods and Models for System Design - New York, USA Varaktighet: 2017 sep. 29 → 2017 okt. 2 Konferensnummer: 15th |
Konferens
Konferens | 15th ACM-IEEE International Conference on Formal Methods and Models for System Design |
---|---|
Land/Territorium | USA |
Ort | New York |
Period | 2017/09/29 → 2017/10/02 |
Ämnesklassifikation (UKÄ)
- Reglerteknik
Fingeravtryck
Utforska forskningsämnen för ”A Proactive Cloud Application Auto-Scaler using Reinforcement Learning”. Tillsammans bildar de ett unikt fingeravtryck.Projekt
- 2 Avslutade
-
Autonomous datacenter for long term deployment: AutoDC
Eker, J. (Forskare), Årzén, K.-E. (Forskare) & Heimerson, A. (Forskare)
2018/12/01 → 2021/10/06
Projekt: Forskning
-
Händelsebaserad reglering av stokastiska system med tillämpning mot serversystem
Cervin, A. (PI), Thelander Andrén, M. (Forskarstuderande), Bernhardsson, B. (Biträdande handledare), Soltesz, K. (Biträdande handledare), Heimerson, A. (Forskarstuderande) & Ruuskanen, J. (Forskarstuderande)
2018/01/01 → 2022/12/31
Projekt: Forskning