A Proactive Cloud Application Auto-Scaler using Reinforcement Learning

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

78 Nedladdningar (Pure)

Sammanfattning

This work explores the use of reinforcement learning to design a proactive cloud resource auto-scaler that is able to predict usage across a distributed microservice application. The focus is on serving time-sensitive workloads, e.g., industrial automation, connected XR/VR (eXtended Reality/Virtual Reality), etc., where each job has a deadline and there is some cost associated with missing a deadline. A simple workload model, as well as a microservice application model, is presented. A reinforcement learning agent is trained to identify workloads and predict needed utilization for identified service chains. The results are compared to standard purely reactive techniques.
Originalspråkengelska
Titel på värdpublikationUCC '22: Proceedings of the 15th IEEE/ACM International Conference on Utility and Cloud Computing
Sidor213-220
Antal sidor8
ISBN (elektroniskt)9781665460873
DOI
StatusPublished - 2022
Evenemang15th ACM-IEEE International Conference on Formal Methods and Models for System Design - New York, USA
Varaktighet: 2017 sep. 292017 okt. 2
Konferensnummer: 15th

Konferens

Konferens15th ACM-IEEE International Conference on Formal Methods and Models for System Design
Land/TerritoriumUSA
OrtNew York
Period2017/09/292017/10/02

Ämnesklassifikation (UKÄ)

  • Reglerteknik

Fingeravtryck

Utforska forskningsämnen för ”A Proactive Cloud Application Auto-Scaler using Reinforcement Learning”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här