A resistor network model for analysis of current and temperature distribution in carbon fibre reinforced polymers during induction heating

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

The interest in carbon fibre reinforced polymers (CFRP) is growing due to their high strength and stiffness compared to their weight, in industries such as automotive and aerospace. This creates a high demand for more effective production methods. Volumetric induction heating of the electrically conductive carbon fibres enable unmatched heat rates and can be used both during manufacturing and joining of parts, but also means technical challenges in terms of uniform temperature distribution. Understanding and prediction of the heating pattern is therefore an important step towards an industrial solution. This article presents a model for simulation of the current and temperature distribution in CFRP during induction heating in which the CFRP is modelled as a network of discrete resistors where the local currents are determined by Kirchhoff’s circuit laws and the temperature distribution is computed by the finite difference method. The model is a complement to traditional three-dimensional finite element simulations and allows for a better understanding of the current paths, and thereby the heating pattern, on a tow size level. Thermographic recordings during induction heating experiments validates the model.
Originalspråkengelska
Sidor (från-till)3159-3183
Antal sidor25
TidskriftJournal of Composite Materials
Volym56
Utgåva20
DOI
StatusPublished - 2022 aug.

Ämnesklassifikation (UKÄ)

  • Kompositmaterial och -teknik

Fingeravtryck

Utforska forskningsämnen för ”A resistor network model for analysis of current and temperature distribution in carbon fibre reinforced polymers during induction heating”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här