A second-order positivity preserving scheme for semilinear parabolic problems

Eskil Hansen, Felix Kramer, Alexander Ostermann

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

393 Nedladdningar (Pure)

Sammanfattning

In this paper we study the convergence behaviour and geometric properties of Strang splitting applied to semilinear evolution equations. We work in an abstract Banach space setting that allows us to analyse a certain class of parabolic equations and their spatial discretizations. For this class of problems, Strang splitting is shown to be stable and second-order convergent. Moreover, it is shown that exponential operator splitting methods and in particular the method of Strang will preserve positivity in certain situations. A numerical illustration of the convergence behaviour is included.
Originalspråkengelska
Sidor (från-till)1428-1435
TidskriftApplied Numerical Mathematics
Volym62
Nummer10
DOI
StatusPublished - 2012

Bibliografisk information

The information about affiliations in this record was updated in December 2015.
The record was previously connected to the following departments: Numerical Analysis (011015004)

Ämnesklassifikation (UKÄ)

  • Matematik

Fingeravtryck

Utforska forskningsämnen för ”A second-order positivity preserving scheme for semilinear parabolic problems”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här