A System-Level Brain Model for Enactive Haptic Perception in a Humanoid Robot

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

Perception is not a passive process but the result of an interaction between an organism and the environment. This is especially clear in haptic perception that depends entirely on tactile exploration of an object. We investigate this idea in a system-level brain model of somatosensory and motor cortex and show how it can use signals from a humanoid robot to categorize different object. The model suggests a number of critical properties that the sensorimotor system must have to support this form of enactive perception. Furthermore, we show that motor feedback during controlled movements is sufficient for haptic object categorization.
Originalspråkengelska
Titel på värdpublikationArtificial Neural Networks and Machine Learning – ICANN 2023
FörlagSpringer
Sidor432-443
Antal sidor11
ISBN (elektroniskt)978-3-031-44207-0
ISBN (tryckt)978-3-031-44206-3
DOI
StatusPublished - 2023 sep. 22
EvenemangThe 32nd International Conference on Artificial Neural Networks (ICANN 2023) - Heraklion, Grekland
Varaktighet: 2023 sep. 262023 sep. 29
https://e-nns.org/icann2023/

Publikationsserier

NamnLecture Notes in Computer Science
FörlagSpringer
Volym14254
ISSN (tryckt)0302-9743
ISSN (elektroniskt)1611-3349

Konferens

KonferensThe 32nd International Conference on Artificial Neural Networks (ICANN 2023)
Förkortad titelICANN 2023
Period2023/09/262023/09/29
Internetadress

Ämnesklassifikation (UKÄ)

  • Robotteknik och automation

Fingeravtryck

Utforska forskningsämnen för ”A System-Level Brain Model for Enactive Haptic Perception in a Humanoid Robot”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här