Sammanfattning
Perception is not a passive process but the result of an interaction between an organism and the environment. This is especially clear in haptic perception that depends entirely on tactile exploration of an object. We investigate this idea in a system-level brain model of somatosensory and motor cortex and show how it can use signals from a humanoid robot to categorize different object. The model suggests a number of critical properties that the sensorimotor system must have to support this form of enactive perception. Furthermore, we show that motor feedback during controlled movements is sufficient for haptic object categorization.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | Artificial Neural Networks and Machine Learning – ICANN 2023 |
Förlag | Springer |
Sidor | 432-443 |
Antal sidor | 11 |
ISBN (elektroniskt) | 978-3-031-44207-0 |
ISBN (tryckt) | 978-3-031-44206-3 |
DOI | |
Status | Published - 2023 sep. 22 |
Evenemang | The 32nd International Conference on Artificial Neural Networks (ICANN 2023) - Heraklion, Grekland Varaktighet: 2023 sep. 26 → 2023 sep. 29 https://e-nns.org/icann2023/ |
Publikationsserier
Namn | Lecture Notes in Computer Science |
---|---|
Förlag | Springer |
Volym | 14254 |
ISSN (tryckt) | 0302-9743 |
ISSN (elektroniskt) | 1611-3349 |
Konferens
Konferens | The 32nd International Conference on Artificial Neural Networks (ICANN 2023) |
---|---|
Förkortad titel | ICANN 2023 |
Period | 2023/09/26 → 2023/09/29 |
Internetadress |
Ämnesklassifikation (UKÄ)
- Robotteknik och automation
Fingeravtryck
Utforska forskningsämnen för ”A System-Level Brain Model for Enactive Haptic Perception in a Humanoid Robot”. Tillsammans bildar de ett unikt fingeravtryck.Utrustning
-
Lund University Cognitive Robotics Lab
Johansson, B. (Manager) & Balkenius, C. (Manager)
KognitionsvetenskapInfrastruktur