Accelerated gradient methods and dual decomposition in distributed model predictive control

Pontus Giselsson, Dang Doan, Tamas Keviczky, Bart De Schutter, Anders Rantzer

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

315 Nedladdningar (Pure)

Sammanfattning

We propose a distributed optimization algorithm for mixed
L_1/L_2-norm optimization based on accelerated gradient methods using dual decomposition. The algorithm achieves convergence rate O(1/k^2), where k is the iteration number, which significantly improves the convergence rates of existing duality-based distributed optimization algorithms that achieve O(1/k). The performance of the developed algorithm is evaluated on randomly generated optimization problems arising in distributed model predictive control (DMPC). The evaluation shows that, when the problem data is sparse and large-scale, our algorithm can outperform current state-of-the-art optimization software CPLEX and MOSEK.
Originalspråkengelska
Sidor (från-till)829-833
TidskriftAutomatica
Volym49
Nummer3
DOI
StatusPublished - 2013

Bibliografisk information

key= gis2012aut

Ämnesklassifikation (UKÄ)

  • Reglerteknik

Fingeravtryck

Utforska forskningsämnen för ”Accelerated gradient methods and dual decomposition in distributed model predictive control”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här