Accurate Indoor Positioning Based on Learned Absolute and Relative Models

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

To improve the accuracy of indoor positioning systems it can be useful to combine different types of sensor data. This paper describes deep learning methods both for estimating absolute positions and for performing pedestrian dead reckoning, and then how to combine the resulting estimates using weighted least squares optimization. The positioning model is based on a custom neural network which uses measurements of received signal strength indication from one instant of time as input. The model for estimating relative positions is on the other hand based on inertial sensors, the accelerometer, magnetometer and gyroscope. The position estimates are then combined using a least squares approach with weights based on the standard deviations of errors in predictions from the used models.

Originalspråkengelska
Titel på värdpublikation2021 International Conference on Indoor Positioning and Indoor Navigation, IPIN 2021
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
ISBN (elektroniskt)9781665404020
DOI
StatusPublished - 2021
Evenemang2021 International Conference on Indoor Positioning and Indoor Navigation, IPIN 2021 - Lloret de Mar, Spanien
Varaktighet: 2021 nov. 292021 dec. 2

Konferens

Konferens2021 International Conference on Indoor Positioning and Indoor Navigation, IPIN 2021
Land/TerritoriumSpanien
OrtLloret de Mar
Period2021/11/292021/12/02

Ämnesklassifikation (UKÄ)

  • Signalbehandling

Fingeravtryck

Utforska forskningsämnen för ”Accurate Indoor Positioning Based on Learned Absolute and Relative Models”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här