Acoustic Trapping: System Design, Optimization and Applications

Mikael Evander, Linda Johansson, Tobias Lilliehorn, Monica Almqvist, Lars Wallman, Stefan Johansson, Thomas Laurell, Johan Nilsson

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review


Manipulation, separation and trapping of particles and cells are very important tools in today's bioanalytical and medical field. The acoustic no-contact trapping method presented at earlier MSW 2004 provides a flexible platform for performing cell and particle assays in a perfusion-based microsystem. To further develop the system microfabricated glass channels are now used, resulting in shorter fabrication times and a very inert channel material. The fluidic design has been revised to minimise the risks of leaking and hydrodynamic focusing has been incorporated to ensure a high trapping efficiency. A change of piezoelectric materials has resulted in less thermal losses in the material, higher reproducibility and shorter manufacturing time. The trapping force was estimated by calculating the fluid force exerted on a single particle levitated in the standing wave as a reference. The temperature increase due to the losses in the transducer was measured using a fluorescent dye, indicating a maximum temperature increase of 10 degrees Celsius. Live cells have been trapped and shown to be viable while still suspended in the standing wave, thus making it possible to do on-line studies on, for example, drug response of cell populations.
Titel på värdpublikationProceedings of the sixth Micro Structure Workshop
Antal sidor1
StatusPublished - 2006
EvenemangMicro Structure Workshop 2006 - Västerås, Sverige
Varaktighet: 2006 maj 92006 maj 10




KonferensMicro Structure Workshop 2006

Ämnesklassifikation (UKÄ)

  • Medicinteknik


Utforska forskningsämnen för ”Acoustic Trapping: System Design, Optimization and Applications”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här