Sammanfattning
In this article, we address the problem of age identification of Twitter users, after their online text. We used a set of text mining, sociolinguistic-based and content-related text features, and we evaluated a number of well-known and widely used machine learning algorithms for classification, in order to examine their appropriateness on this task. The experimental results showed that Random Forest algorithm offered superior performance achieving accuracy equal to 61%. We ranked the classification features after their informativity, using the ReliefF algorithm, and we analyzed the results in terms of the sociolinguistic principles on age linguistic variation.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | Computational Linguistics and Intelligent Text Processing |
Undertitel på värdpublikation | 17th International Conference, CICLing 2016, Konya, Turkey, April 3–9, 2016, Revised Selected Papers, Part II |
Redaktörer | Alexander Gelbukh |
Utgivningsort | Cham |
Förlag | Springer |
Sidor | 385-395 |
ISBN (elektroniskt) | 978-3-319-75487-1 |
ISBN (tryckt) | 978-3-319-75486-4 |
DOI | |
Status | Published - 2018 |
Externt publicerad | Ja |
Evenemang | 17th International Conference on Intelligent Text Processing and Computational Linguistics: CICLing 2016 - Konya, Turkiet Varaktighet: 2016 apr. 3 → 2016 apr. 9 http://www.cicling.org/2016/ |
Publikationsserier
Namn | Lecture Notes in Computer Science (LNCS) |
---|---|
Volym | 9624 |
Konferens
Konferens | 17th International Conference on Intelligent Text Processing and Computational Linguistics |
---|---|
Land/Territorium | Turkiet |
Ort | Konya |
Period | 2016/04/03 → 2016/04/09 |
Internetadress |
Ämnesklassifikation (UKÄ)
- Jämförande språkvetenskap och lingvistik