Sammanfattning

Background: Amyloid-beta (Aβ) is hypothesized to facilitate the spread of tau pathology beyond the medial temporal lobe (MTL). However, there is evidence that age-related Aβ-independent tau pathology is present outside the MTL (Kaufman et al., Acta Neuropathol, 2018). We examine tau deposition determined by positron emission tomography (PET) in regions typically involved earlier/later in AD and downstream effects on neurodegeneration and cognition in cognitively unimpaired older adults and a low-Aβ subgroup. Methods: We included 488 adults (40-91 years; low-Aβ: n=355, 65.2±11.5 years) from the BioFINDER-2 study. MTL volumes (dentate gyrus, subiculum (SUB), cornu ammonis 1) and thickness (entorhinal cortex, Brodmann areas (BA)35/36, and parahippocampal cortex) were obtained, using Automated Segmentation for Hippocampal Subfields packages for T1- and T2-weighted magnetic resonance images. Thickness of early/late neocortical AD-regions (anterior cingulate, precuneus/posterior cingulate (PPC), orbitofrontal, inferior parietal cortex; and middle frontal, lateral occipital, and precentral/postcentral gyrus) was determined using FreeSurfer. [18F]RO948- and [18F]flutemetamol-PET standardized uptake value ratios (SUVRs) were calculated for local tau and global/local Aβ. Aβ status was determined using Aβ-PET or cerebrospinal fluid Aβ-42/40 ratio. Global cognition was measured using delayed word-list recall, trail making test B, and animal fluency. Results: Increasing age was associated with higher tau-PET SUVRs primarily in MTL/frontal/parietal regions. A significant association between age and local tau-PET remained even when including Aβ-PET as a mediator (Fig. 1). Age and local tau-PET, but not Aβ-PET, where negatively associated with structure in most examined regions (Figs. 2-3). Age-structure associations were serially mediated via tau-PET in regions with early AD pathology (SUB/BA35/PPC). Also, in the low-Aβ subgroup, tau-PET mediated the age-structure (SUB/BA35/PPC) associations (Fig. 3D). Finally, the age-global cognition relationship was serially mediated via MTL tau-PET and subiculum volume, even when including global Aβ-PET as additional mediator (Fig. 4). Conclusion: We observe partially Aβ-independent associations between age and tau-PET signal across the neocortex. Interestingly, partially Aβ-independent tau-PET signal appears to mediate the age-structure associations in and outside the MTL (PPC), also in the low-Aβ group, and the age-MTL structure-cognition associations. This potentially provides in vivo support for Primary Age-related Tauopathy downstream effects on structure, beyond the MTL, and cognition.

Originalspråkengelska
Artikelnummere067081
TidskriftAlzheimer's and Dementia
Volym18
NummerS1
DOI
StatusPublished - 2022 dec.

Ämnesklassifikation (UKÄ)

  • Neurologi

Fingeravtryck

Utforska forskningsämnen för ”Age-related tau-PET uptake and its downstream effects extend beyond the medial temporal lobe in cognitively normal older adults”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här