TY - JOUR
T1 - An automatic method for quantification of myocardium at risk from myocardial perfusion SPECT in patients with acute coronary occlusion.
AU - Fransson, Helen
AU - Engblom, Henrik
AU - Hedström, Erik
AU - Bouvier, Frederic
AU - Sörensson, Peder
AU - Pernow, John
AU - Arheden, Håkan
AU - Heiberg, Einar
PY - 2010
Y1 - 2010
N2 - BACKGROUND: In order to determine myocardial salvage, accurate quantification of myocardium at risk (MaR) is necessary. We present a validated novel automatic segmentation algorithm for quantification of MaR by myocardial perfusion SPECT (MPS) in patients with acute coronary occlusion. METHODS AND RESULTS: Twenty-nine patients with coronary occlusion were injected with a perfusion tracer before reperfusion, and underwent rest MPS within 4 hours. The MaR was quantified using the proposed algorithm (Segment software), the software Quantitative Perfusion SPECT (QPS) and by manual segmentation. The Segment MaR algorithm used a threshold of 55% of maximal counts and an a priori model based on normal coronary artery perfusion territories. The MaR was 30 +/- 10% left ventricular mass (%LVM) by manual segmentation, 31 +/- 12%LVM by Segment, and 36 +/- 14%LVM by QPS. There was a good agreement between automatic and manual segmentation for both of the algorithms with a lower bias for Segment (.8 +/- 4.0%LVM) than for QPS (5.8 +/- 5.8%LVM) when compared to manual segmentation. CONCLUSIONS: The Segment MaR algorithm can be used to correctly assess MaR from MPS images in patients with acute coronary occlusion without access to tracer-specific normal database. The MaR in relation to final infarct size enables determination of myocardial salvage.
AB - BACKGROUND: In order to determine myocardial salvage, accurate quantification of myocardium at risk (MaR) is necessary. We present a validated novel automatic segmentation algorithm for quantification of MaR by myocardial perfusion SPECT (MPS) in patients with acute coronary occlusion. METHODS AND RESULTS: Twenty-nine patients with coronary occlusion were injected with a perfusion tracer before reperfusion, and underwent rest MPS within 4 hours. The MaR was quantified using the proposed algorithm (Segment software), the software Quantitative Perfusion SPECT (QPS) and by manual segmentation. The Segment MaR algorithm used a threshold of 55% of maximal counts and an a priori model based on normal coronary artery perfusion territories. The MaR was 30 +/- 10% left ventricular mass (%LVM) by manual segmentation, 31 +/- 12%LVM by Segment, and 36 +/- 14%LVM by QPS. There was a good agreement between automatic and manual segmentation for both of the algorithms with a lower bias for Segment (.8 +/- 4.0%LVM) than for QPS (5.8 +/- 5.8%LVM) when compared to manual segmentation. CONCLUSIONS: The Segment MaR algorithm can be used to correctly assess MaR from MPS images in patients with acute coronary occlusion without access to tracer-specific normal database. The MaR in relation to final infarct size enables determination of myocardial salvage.
U2 - 10.1007/s12350-010-9237-z
DO - 10.1007/s12350-010-9237-z
M3 - Article
C2 - 20440591
VL - 17
SP - 831
EP - 840
JO - Journal of Nuclear Cardiology
JF - Journal of Nuclear Cardiology
SN - 1532-6551
ER -