An automatic tuner with short experiment and probabilistic plant parameterization

Kristian Soltesz, Pedro Mercader, Alfonso Baños

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

6 Citeringar (SciVal)
253 Nedladdningar (Pure)

Sammanfattning

A novel automatic tuning strategy is proposed. It is based on an experiment of very short duration, followed by simultaneous identification of LTI model parameters and an estimate of their error covariance. The parametric uncertainty model is subsequently exploited to design linear controllers with magnitude bounds on some closed-loop transfer function of interest, such as the sensitivity function. The method is demonstrated through industrially relevant examples. Robustness is enforced through probabilistic constraints on the H∞ norms of the sensitivity function, while minimizing load disturbance integral error (IE) to ensure performance. To demonstrate the strength of the proposed method, identification for the mentioned examples is carried out under a high level of measurement noise.
Originalspråkengelska
Sidor (från-till)1857-1873
TidskriftInternational Journal of Robust and Nonlinear Control
Volym27
Utgåva11
DOI
StatusPublished - 2017 juli

Ämnesklassifikation (UKÄ)

  • Reglerteknik

Fingeravtryck

Utforska forskningsämnen för ”An automatic tuner with short experiment and probabilistic plant parameterization”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här