An operational calculus for matrix-exponential disributions, with applicaions to a Brownian (q,Q) inventory model

Sören Asmussen, David Perry

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

distribution G on [math not displayed] is called matrix-exponential if the density has the form αeTz s where α is a row vector, T a square matrix and s a column vector. Equivalently, the Laplace transform is rational. For such distributions, we develop an operator calculus, where the key step is manipulation of analytic functions f(z) extended to matrix arguments. The technique is illustrated via an inventory model moving according to a reflected Brownian motion with negative drift, such that an order of size Q is placed when the stock process down-crosses some level q. Explicit formulas for the stationary density are found under the assumption that the leadtime Z has a matrix-exponential distribution, and involve expressions of the form f(T) where [math not displayed].
Originalspråkengelska
Sidor (från-till)166-176
TidskriftMathematics of Operations Research
Volym23
Nummer1
StatusPublished - 1998

Ämnesklassifikation (UKÄ)

  • Sannolikhetsteori och statistik

Fingeravtryck

Utforska forskningsämnen för ”An operational calculus for matrix-exponential disributions, with applicaions to a Brownian (q,Q) inventory model”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här