Projekt per år
Sammanfattning
A maximum likelihood methodology for a general class of models is presented, using an approximate Bayesian computation (ABC) approach. The typical target of ABC methods are models with intractable likelihoods, and we combine an ABC-MCMC sampler with so-called "data cloning" for maximum likelihood estimation. Accuracy of ABC methods relies on the use of a small threshold value for comparing simulations from the model and observed data. The proposed methodology shows how to use large threshold values, while the number of data-clones is increased to ease convergence towards an approximate maximum likelihood estimate. We show how to exploit the methodology to reduce the number of iterations of a standard ABC-MCMC algorithm and therefore reduce the computational effort, while obtaining reasonable point estimates. Simulation studies show the good performance of our approach on models with intractable likelihoods such as g-and-k distributions, stochastic differential equations and state-space models.
Originalspråk | engelska |
---|---|
Sidor (från-till) | 166-183 |
Antal sidor | 18 |
Tidskrift | Computational Statistics & Data Analysis |
Volym | 105 |
Tidigt onlinedatum | 2016 aug. 19 |
DOI | |
Status | Published - 2017 |
Ämnesklassifikation (UKÄ)
- Sannolikhetsteori och statistik
Fingeravtryck
Utforska forskningsämnen för ”Approximate maximum likelihood estimation using data-cloning ABC”. Tillsammans bildar de ett unikt fingeravtryck.Projekt
- 1 Aktiva
-
Stochastic modelling of protein folding and likelihood-free statistical inference methods
Picchini, U. (PI), Forman, J. (Biträdande handledare), Lindorff-Larsen, K. (Biträdande handledare) & Wiqvist, S. (Forskarstuderande)
2015/01/01 → …
Projekt: Forskning