Argument-Based Bayesian Estimation of Attack Graphs: A Preliminary Empirical Analysis

Hiroyuki Kido, Frank Zenker

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

This paper addresses how to identify attack relations on the basis of lay arguers’ acceptability-judgments for natural language arguments. We characterize argument-based reasoning by three Bayesian network models (coherent, decisive, and positional). Each model yields a different attack relation-estimate. Subsequently, we analyze to which extent estimates are consistent with, and so could potentially predict, lay arguers’ acceptability-judgments. Evaluation of a model’s predictive ability relies on anonymous data collected online (N = 73). After applying leave-one-out cross-validation, in the best case models achieve an average area under the receiver operating curve (AUC) of.879 and an accuracy of.786. Though the number of arguments is small (N = 5), this shows that argument-based Bayesian inference can in principle estimate attack relations.

Originalspråkengelska
Titel på värdpublikationPRIMA 2017
Undertitel på värdpublikationPrinciples and Practice of Multi-Agent Systems - 20th International Conference, Proceedings
FörlagSpringer
Sidor523-532
Antal sidor10
Volym10621 LNAI
ISBN (tryckt)9783319691305
DOI
StatusPublished - 2017
Evenemang20th International Conference on Principles and Practice of Multi-Agent Systems, PRIMA 2017 - Nice, Frankrike
Varaktighet: 2017 okt. 302017 nov. 3

Publikationsserier

NamnLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volym10621 LNAI
ISSN (tryckt)0302-9743
ISSN (elektroniskt)1611-3349

Konferens

Konferens20th International Conference on Principles and Practice of Multi-Agent Systems, PRIMA 2017
Land/TerritoriumFrankrike
OrtNice
Period2017/10/302017/11/03

Ämnesklassifikation (UKÄ)

  • Sannolikhetsteori och statistik
  • Datavetenskap (datalogi)

Fingeravtryck

Utforska forskningsämnen för ”Argument-Based Bayesian Estimation of Attack Graphs: A Preliminary Empirical Analysis”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här