Sammanfattning
The effects of reduced intercellular coupling in the sinus node were investigated by means of simulations. Coupling was reduced both uniformly, and by introducing localized interaction blocks. In either case, model sinus node element networks typically splitted into frequency domains. These were defined as groups of neighbour elements which all attained the same mean firing frequency. In systems, simulating the vicinity of an impulse outlet to the atrium, the sinus node elements often splitted into two domains, one slowly firing just inside the outlet, and one normally firing large domain in the sinus node interior. This two-domain situation was analysed using a two-element system. Wenckebach conduction and advanced (m:1) exit blocks were seen, together with more odd block patterns and slow chaotic rhythms. The two-domain situation appeared also when two discrete outlets were considered. The slow domains around each outlet synchronized via the atrium. However, if there were some degree of exit block through one of the outlets only, brady-tachy like rhythms could be simulated due to a re-entrant circuit including both sinus node and atrial tissue. In conclusion, poor coupling in the sinus node seems to be sufficient to produce most arrhythmias in the sick sinus syndrome.
Originalspråk | engelska |
---|---|
Sidor (från-till) | 201-217 |
Tidskrift | Journal of Theoretical Biology |
Volym | 211 |
Nummer | 3 |
DOI | |
Status | Published - 2001 |
Bibliografisk information
The information about affiliations in this record was updated in December 2015.The record was previously connected to the following departments: Department of Clinical Physiology (Lund) (013013000), Mathematical Physics (Faculty of Technology) (011040002), Classical archaeology and ancient history (015004001)
Ämnesklassifikation (UKÄ)
- Kardiologi och kardiovaskulära sjukdomar
- Lungmedicin och allergi