Assessing progression in engineering study programs

Forskningsoutput: KonferensbidragKonferenspaper, ej i proceeding/ej förlagsutgivetPeer review


Swedish engineering education is organised as study programs consisting of intertwined chains of course units. Formal program objectives integrate skills, scientific attitudes and engineering knowledge. However, assessment of learning and educational quality typically focuses outcomes of individual course modules. It is our concern that study programme quality and student progression are hard to evaluate and stimulate in the prevailing modularised system. We have therefore investigated programme objectives and student progression and subsequently designed activities to evaluate and stimulate integrated engineering capacities and evaluate progression among freshmen and more senior students of chemical- and biotechnology engineering programmes. To make the aim of progression explicit we first interviewed students, alumni, teaching staff and senior industrial staff (engineer employers), thus elucidating core educational and professional values. Interviews indicate that students typically develop a sense of "becoming engineers" rather late in their training (6th semester). All interviewees emphasized problem-solving abilities as the most desirable competence. However, teaching staff focussed more on subject discipline content whereas students and industry employers go beyond subject discipline and request professional social skills. A real-world case was used to monitor (and stimulate) engineering programme progression in 1st and 3rd year student groups by means of qualitative assessment of engineering skills including critical problem-solving skills, appropriate use of technical and scientific language, knowledge of chemistry, biochemistry and engineering, statistical reasoning, team work behaviour, business-mindedness, delimitation of professional role, risk management, and work ethics. The student teams of both groups did well and solved the main aspects of the case although the senior student teams managed to do it on a more complex level. There were other clearly detectable aspects of progression among the 3rd years students, for instance problem solving strategies, team work behaviour, and independent use of available presentation materials. We conclude that observed case sessions can (1) be used confidently to assess progression of learning in engineering study programs (2) reveal students' abilities to combine knowledge from different fields and courses, and (3) demonstrate weaknesses in the progression. The method is however probably too complex to allow valid cross-institutional comparisons.

Antal sidor7
StatusPublished - 2011 jan 1
EvenemangSEFI 2011 Annual Conference - Lisbon, Portugal
Varaktighet: 2011 sep 272011 sep 30


KonferensSEFI 2011 Annual Conference

Ämnesklassifikation (UKÄ)

  • Teknik och teknologier


Utforska forskningsämnen för ”Assessing progression in engineering study programs”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här