Attosecond timing of electron emission from a molecular shape resonance

S. Nandi, E. Plésiat, S. Zhong, A. Palacios, D. Busto, M. Isinger, L. Neoričić, C. L. Arnold, R. J. Squibb, R. Feifel, P. Decleva, A. L'Huillier, F. Martín, M. Gisselbrecht

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

Shape resonances in physics and chemistry arise from the spatial confinement of a particle by a potential barrier. In molecular photoionization, these barriers prevent the electron from escaping instantaneously, so that nuclei may move and modify the potential, thereby affecting the ionization process. By using an attosecond two-color interferometric approach in combination with high spectral resolution, we have captured the changes induced by the nuclear motion on the centrifugal barrier that sustains the well-known shape resonance in valence-ionized N2. We show that despite the nuclear motion altering the bond length by only 2%, which leads to tiny changes in the potential barrier, the corresponding change in the ionization time can be as large as 200 attoseconds. This result poses limits to the concept of instantaneous electronic transitions in molecules, which is at the basis of the Franck-Condon principle of molecular spectroscopy.

Originalspråkengelska
Sidor (från-till)eaba7762
TidskriftScience Advances
Volym6
Nummer31
DOI
StatusPublished - 2020

Ämnesklassifikation (UKÄ)

  • Atom- och molekylfysik och optik (Här ingår: Kemisk fysik, kvantoptik)

Fingeravtryck

Utforska forskningsämnen för ”Attosecond timing of electron emission from a molecular shape resonance”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här