Projekt per år
Sammanfattning
Open Source Security and Dependency Vulnerability Management (DVM) has become a more vital part of the software security stack in recent years as modern software tend to be more dependent on open source libraries. The largest open source of vulnerabilities is the National Vulnerability Database (NVD), which supplies developers with machine-readable vulnerabilities. However, sometimes Common Vulnerabilities and Exposures (CVE) have not been labeled with a Common Platform Enumeration (CPE) -version, -product and -vendor. This makes it very hard to automatically discover these vulnerabilities from import statements in dependency files. We, therefore, propose an automatic process of matching CVE summaries with CPEs through the machine learning task called Named Entity Recognition (NER). Our proposed model achieves an F-measure of 0.86 with a precision of 0.857 and a recall of 0.865, outperforming previous research for automated CPE-labeling of CVEs.
Originalspråk | engelska |
---|---|
Titel på värdpublikation | Detection of Intrusions and Malware, and Vulnerability Assessment - 17th International Conference, DIMVA 2020, Proceedings |
Redaktörer | Clémentine Maurice, Leyla Bilge, Gianluca Stringhini, Nuno Neves |
Förlag | Springer |
Sidor | 3-22 |
Antal sidor | 20 |
ISBN (tryckt) | 9783030526825 |
DOI | |
Status | Published - 2020 |
Evenemang | 17th International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, DIMVA 2020 - Lisbon, Portugal Varaktighet: 2020 juni 24 → 2020 juni 26 |
Publikationsserier
Namn | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volym | 12223 LNCS |
ISSN (tryckt) | 0302-9743 |
ISSN (elektroniskt) | 1611-3349 |
Konferens
Konferens | 17th International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, DIMVA 2020 |
---|---|
Land/Territorium | Portugal |
Ort | Lisbon |
Period | 2020/06/24 → 2020/06/26 |
Ämnesklassifikation (UKÄ)
- Programvaruteknik
Fingeravtryck
Utforska forskningsämnen för ”Automated CPE Labeling of CVE Summaries with Machine Learning”. Tillsammans bildar de ett unikt fingeravtryck.Projekt
- 1 Avslutade
-
SMARTY: Säkra mjukvaruuppdateringar för den smarta staden
Hell, M. (PI), Magnusson, B. (PI), Gehrmann, C. (CoI), Paladi, N. (Forskare), Karlsson, L. (Forskare), Sönnerup, J. (Forskare), Johnsson, B. A. (Forskare), Hedin, G. (Forskare), Nordahl, M. (Forskare), Pagnin, E. (Forskare), Kundu, R. (Forskare), Åkesson, A. (Forskare), Stankovski Wagner, P. (Forskare) & Ramezanian, S. (Forskare)
Stiftelsen för Strategisk Forskning, SSF
2018/03/01 → 2024/12/31
Projekt: Forskning