Automated CPE Labeling of CVE Summaries with Machine Learning

Emil Wåreus, Martin Hell

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

Open Source Security and Dependency Vulnerability Management (DVM) has become a more vital part of the software security stack in recent years as modern software tend to be more dependent on open source libraries. The largest open source of vulnerabilities is the National Vulnerability Database (NVD), which supplies developers with machine-readable vulnerabilities. However, sometimes Common Vulnerabilities and Exposures (CVE) have not been labeled with a Common Platform Enumeration (CPE) -version, -product and -vendor. This makes it very hard to automatically discover these vulnerabilities from import statements in dependency files. We, therefore, propose an automatic process of matching CVE summaries with CPEs through the machine learning task called Named Entity Recognition (NER). Our proposed model achieves an F-measure of 0.86 with a precision of 0.857 and a recall of 0.865, outperforming previous research for automated CPE-labeling of CVEs.

Originalspråkengelska
Titel på värdpublikationDetection of Intrusions and Malware, and Vulnerability Assessment - 17th International Conference, DIMVA 2020, Proceedings
RedaktörerClémentine Maurice, Leyla Bilge, Gianluca Stringhini, Nuno Neves
FörlagSpringer
Sidor3-22
Antal sidor20
ISBN (tryckt)9783030526825
DOI
StatusPublished - 2020
Evenemang17th International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, DIMVA 2020 - Lisbon, Portugal
Varaktighet: 2020 juni 242020 juni 26

Publikationsserier

NamnLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volym12223 LNCS
ISSN (tryckt)0302-9743
ISSN (elektroniskt)1611-3349

Konferens

Konferens17th International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, DIMVA 2020
Land/TerritoriumPortugal
OrtLisbon
Period2020/06/242020/06/26

Ämnesklassifikation (UKÄ)

  • Programvaruteknik

Fingeravtryck

Utforska forskningsämnen för ”Automated CPE Labeling of CVE Summaries with Machine Learning”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här