Automated Decision Support for Bone Scintigraphy

Mattias Ohlsson, Karl Sjostrand, Jens Richter, Reza Kaboteh, May Sadik, Lars Edenbrandt

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

A quantitative analysis of metastatic bone involvement can be an important prognostic indicator of survival or a tool in monitoring treatment response in patients with cancer The purpose of this study was to develop a completely automated decision support system for whole-body bone scans using image analysis and artificial neural networks. The study population consisted of 795 whole-body bone scans. The decision support system first detects and classifies individual hotspots as being metastatic or not. A second prediction model then classifies the scan regarding metastatic disease on a patient level. The test set sensitivity and specificity was 95% and 64% respectively, corresponding to 95% area under the receiver operating characteristics curve.
Originalspråkengelska
Titel på värdpublikation2009 22nd IEEE International Symposium on Computer-Based Medical Systems
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Sidor298-303
ISBN (tryckt)978-1-4244-4879-1
DOI
StatusPublished - 2009
Evenemang22nd IEEE International Symposium on Computer-Based Medical Systems - Albuquerque, NM
Varaktighet: 2009 aug. 32009 aug. 4

Publikationsserier

Namn
ISSN (tryckt)1063-7125

Konferens

Konferens22nd IEEE International Symposium on Computer-Based Medical Systems
Period2009/08/032009/08/04

Ämnesklassifikation (UKÄ)

  • Radiologi och bildbehandling

Fingeravtryck

Utforska forskningsämnen för ”Automated Decision Support for Bone Scintigraphy”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här