Automated Parameter Selection for Total Variation Minimization in Image Restoration

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

Algorithms for automatically selecting a scalar or locally varying regularization parameter for total variation models with an Lτ-data fidelity term, τ∈ { 1 , 2 } , are presented. The automated selection of the regularization parameter is based on the discrepancy principle, whereby in each iteration a total variation model has to be minimized. In the case of a locally varying parameter, this amounts to solve a multiscale total variation minimization problem. For solving the constituted multiscale total variation model, convergent first- and second-order methods are introduced and analyzed. Numerical experiments for image denoising and image deblurring show the efficiency, the competitiveness, and the performance of the proposed fully automated scalar and locally varying parameter selection algorithms.

Originalspråkengelska
Sidor (från-till)239-268
Antal sidor30
TidskriftJournal of Mathematical Imaging and Vision
Volym57
Nummer2
DOI
StatusPublished - 2017 feb. 1
Externt publiceradJa

Bibliografisk information

Publisher Copyright:
© 2016, Springer Science+Business Media New York.

Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.

Ämnesklassifikation (UKÄ)

  • Beräkningsmatematik
  • Datorgrafik och datorseende

Fingeravtryck

Utforska forskningsämnen för ”Automated Parameter Selection for Total Variation Minimization in Image Restoration”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här