Automatic feature point correspondences and shape analysis with missing data and outliers using MDL

Karl Åström, Johan Karlsson, Olof Enqvist, Anders Ericsson, Fredrik Kahl

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

Automatic construction of shape models from examples has recently been the focus of intense research. These methods have proved to be useful for shape segmentation, tracking, recognition and shape understanding. In this paper we discuss automatic landmark selection and correspondence determination from a discrete set of landmarks, typically obtained by feature extraction. The set of landmarks may include both outliers and missing data. Our framework has a solid theoretical basis using principles of minimal description length (MDL). In order to exploit these ideas, new non-heuristic methods for (i) principal component analysis and (ii) procrustes mean are derived - as a consequence of the modelling principle. The resulting MDL criterion is optimised over both discrete and continuous decision variables. The algorithms have been implemented and tested on the problem of automatic shape extraction from feature points in image sequences.
Originalspråkengelska
Titel på värdpublikationProceedings 15th Scandinavian Image Analysis Conference
RedaktörerBjarne Kjaer Ersböll, Kim Stenstrup Pedersen
FörlagSpringer
Sidor21-30
Volym4522
ISBN (tryckt)ISBN 978-3-540-73039-2
DOI
StatusPublished - 2007
Evenemang15th Scandinavian Image Analysis Conference - Aalborg, Danmark
Varaktighet: 2007 juni 102007 juni 14

Publikationsserier

Namn
Volym4522

Konferens

Konferens15th Scandinavian Image Analysis Conference
Land/TerritoriumDanmark
OrtAalborg
Period2007/06/102007/06/14

Ämnesklassifikation (UKÄ)

  • Matematik

Fingeravtryck

Utforska forskningsämnen för ”Automatic feature point correspondences and shape analysis with missing data and outliers using MDL”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här