Automatic segmentation of lungs in SPECT images using active shape model trained by meshes delineated in CT images

Cheimariotis Grigorios-Aris, Mariam Al-Mashat, Haris Kostas, Aletras H. Anthony, Jonas Jögi, Marika Bajc, Maglaveras Nicolaos, Einar Heiberg

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

This paper presents a fully automated method for segmentation of 3D SPECT ventilation and perfusion images. It relies on statistical information on lung shape derived by CT manual segmentation and its main processing steps are: shape model extraction, binary segmentation, positioning of mean shape in SPECT images and iterative shape adaptation based on intensity profiles and on what is considered 'plausible' lung shape. The Active Shape Model is used to generate accurate anatomic results in SPECT images with functional information and thus unclear borders, especially in the case of pathologies. The method was compared against ground truth manual segmentation on CT images, using volumetric, difference dice coefficient, sensitivity and precision.

Originalspråkengelska
Titel på värdpublikation2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
FörlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Sidor1280-1283
Antal sidor4
Volym2016-October
ISBN (elektroniskt)9781457702204
DOI
StatusPublished - 2016 okt. 13
Evenemang38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 - Orlando, USA
Varaktighet: 2016 aug. 162016 aug. 20

Konferens

Konferens38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
Land/TerritoriumUSA
OrtOrlando
Period2016/08/162016/08/20

Ämnesklassifikation (UKÄ)

  • Radiologi och bildbehandling

Fingeravtryck

Utforska forskningsämnen för ”Automatic segmentation of lungs in SPECT images using active shape model trained by meshes delineated in CT images”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här