Automating algebraic proof systems is NP-hard

Susanna F. De Rezende, Mika Göös, Jakob Nordström, Toniann Pitassi, Robert Robere, Dmitry Sokolov

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

We show that algebraic proofs are hard to find: Given an unsatisfiable CNF formula F, it is NP-hard to find a refutation of F in the Nullstellensatz, Polynomial Calculus, or Sherali-Adams proof systems in time polynomial in the size of the shortest such refutation. Our work extends, and gives a simplified proof of, the recent breakthrough of Atserias and Müller (JACM 2020) that established an analogous result for Resolution.

Originalspråkengelska
Titel på värdpublikationSTOC 2021 - Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing
RedaktörerSamir Khuller, Virginia Vassilevska Williams
FörlagAssociation for Computing Machinery (ACM)
Sidor209-222
Antal sidor14
ISBN (elektroniskt)9781450380539
DOI
StatusPublished - 2021
Evenemang53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021 - Virtual, Online, Italien
Varaktighet: 2021 juni 212021 juni 25

Publikationsserier

NamnProceedings of the Annual ACM Symposium on Theory of Computing
ISSN (tryckt)0737-8017

Konferens

Konferens53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021
Land/TerritoriumItalien
OrtVirtual, Online
Period2021/06/212021/06/25

Ämnesklassifikation (UKÄ)

  • Datavetenskap (datalogi)

Fingeravtryck

Utforska forskningsämnen för ”Automating algebraic proof systems is NP-hard”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här