Automotive fault nowcasting with machine learning and natural language processing

John Pavlopoulos, Alv Romell, Jacob Curman, Olof Steinert, Tony Lindgren, Markus Borg, Korbinian Randl

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

Automated fault diagnosis can facilitate diagnostics assistance, speedier troubleshooting, and better-organised logistics. Currently, most AI-based prognostics and health management in the automotive industry ignore textual descriptions of the experienced problems or symptoms. With this study, however, we propose an ML-assisted workflow for automotive fault nowcasting that improves on current industry standards. We show that a multilingual pre-trained Transformer model can effectively classify the textual symptom claims from a large company with vehicle fleets, despite the task’s challenging nature due to the 38 languages and 1357 classes involved. Overall, we report an accuracy of more than 80% for high-frequency classes and above 60% for classes with reasonable minimum support, bringing novel evidence that automotive troubleshooting management can benefit from multilingual symptom text classification.

Originalspråkengelska
Sidor (från-till)843–861
Antal sidor19
TidskriftMachine Learning
Volym113
Nummer2
Tidigt onlinedatum2023
DOI
StatusPublished - 2024

Ämnesklassifikation (UKÄ)

  • Datavetenskap (Datalogi)

Fingeravtryck

Utforska forskningsämnen för ”Automotive fault nowcasting with machine learning and natural language processing”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här