Background and Foreground Modeling Using an Online EM Algorithm

Johan Lindström, Finn Lindgren, Karl Åström, Jan Holst, Ulla Holst

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingForskningPeer review

Sammanfattning

A novel approach to background/foreground segmentation using an online EM algorithm is presented. The method models each layer as a Gaussian mixture, with local, per pixel, parameters for the background layer and global parameters for the foreground layer, utilising information from the entire scene when estimating the foreground. Additionally, the online EM algorithm uses a progressive
learning rate where the relative update speed of each Gaussian component depends on how often the component has been observed. It is shown that the progressive learning rate follows naturally from introduction of a forgetting factor in the log-likelihood.

To reduce the number of mixture components similar foreground components are merged using a method based on the Kullback-Leibler distance. A bias is introduced in the variance estimates to avoid the known problem of singularities in the log-likelihood of Gaussian mixtures
when the variance tends to zero.

To allow a decoupling of the learning rate of the Gaussian components and the speed at which stationary objects are incorporated into the background a CUSUM detector is used
instead of the prevailing method that uses the ratio of prior probability to standard deviation.

The algorithm is scale invariant and its properties on gray-scale and RGB videos, as well as on output from an edge detector, is compared to that of another algorithm. Especially for the edge detector video performance increases dramatically.
Originalspråkengelska
Titel på värdpublikationIEEE International Workshop on Visual Surveillance
RedaktörerGraeme Jones
FörlagFaculty of Computing, Information Systems and mathematics, Kingston University, Surrey, UK
Sidor9-16
Antal sidor8
VolymVS2006
StatusPublished - 2006
EvenemangThe Sixth IEEE International Workshop on Visual Surveillance - Graz, Österrike
Varaktighet: 0001 jan 2 → …

Publikationsserier

Namn
VolymVS2006

Konferens

KonferensThe Sixth IEEE International Workshop on Visual Surveillance
Land/TerritoriumÖsterrike
OrtGraz
Period0001/01/02 → …

Ämnesklassifikation (UKÄ)

  • Datorseende och robotik (autonoma system)
  • Matematik
  • Sannolikhetsteori och statistik

Fingeravtryck

Utforska forskningsämnen för ”Background and Foreground Modeling Using an Online EM Algorithm”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här