Beyond Gröbner Bases: Basis Selection for Minimal Solvers

Viktor Larsson, Magnus Oskarsson, Kalle Astrom, Alge Wallis, Tomas Pajdla, Zuzana Kukelova

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

Many computer vision applications require robust estimation of the underlying geometry, in terms of camera motion and 3D structure of the scene. These robust methods often rely on running minimal solvers in a RANSAC framework. In this paper we show how we can make polynomial solvers based on the action matrix method faster, by careful selection of the monomial bases. These monomial bases have traditionally been based on a Grobner basis for the polynomial ideal. Here we describe how we can enumerate all such bases in an efficient way. We also show that going beyond Grobner bases leads to more efficient solvers in many cases. We present a novel basis sampling scheme that we evaluate on a number of problems.

Originalspråkengelska
Titel på värdpublikationProceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
FörlagIEEE Computer Society
Sidor3945-3954
Antal sidor10
ISBN (elektroniskt)9781538664209
DOI
StatusPublished - 2018 dec. 14
Evenemang31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, USA
Varaktighet: 2018 juni 182018 juni 22

Konferens

Konferens31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
Land/TerritoriumUSA
OrtSalt Lake City
Period2018/06/182018/06/22

Ämnesklassifikation (UKÄ)

  • Datorseende och robotik (autonoma system)

Fingeravtryck

Utforska forskningsämnen för ”Beyond Gröbner Bases: Basis Selection for Minimal Solvers”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här