Biharmonic functions on the classical compact simple Lie groups

Sigmundur Gudmundsson, Stefano Montaldo, Andrea Ratto

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

The main aim of this work is to construct several new families of proper biharmonic functions defined on open subsets of the classical compact simple Lie groups SU(n), SO(n) and Sp(n). We work in a geometric setting which connects our study with the theory of submersive harmonic morphisms. We develop a general duality principle and use this to interpret our new examples on the Euclidean sphere S^3 and on the hyperbolic space H^3.
Originalspråkengelska
Sidor (från-till)1525–1547
Antal sidor23
TidskriftJournal of Geometric Analysis
Volym28
Nummer2
DOI
StatusPublished - 2018

Ämnesklassifikation (UKÄ)

  • Geometri

Fingeravtryck

Utforska forskningsämnen för ”Biharmonic functions on the classical compact simple Lie groups”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här