Bootstrapped Representation Learning for Skeleton-Based Action Recognition

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceedingPeer review

Sammanfattning

In this work, we study self-supervised representation learning for 3D skeleton-based action recognition. We extend Bootstrap Your Own Latent (BYOL) for representation learning on skeleton sequence data and propose a new data augmentation strategy including two asymmetric transformation pipelines. We also introduce a multi-viewpoint sampling method that leverages multiple viewing angles of the same action captured by different cameras. In the semi-supervised setting, we show that the performance can be further improved by knowledge distillation from wider networks, leveraging once more the unlabeled samples. We conduct extensive experiments on the NTU-60, NTU-120 and PKU-MMD datasets to demonstrate the performance of our proposed method. Our method consistently outperforms the current state of the art on linear evaluation, semi-supervised and transfer learning benchmarks.

Originalspråkengelska
Titel på värdpublikationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022
FörlagIEEE Computer Society
Sidor4153-4163
Antal sidor11
ISBN (elektroniskt)9781665487399
DOI
StatusPublished - 2022
Evenemang2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022 - New Orleans, USA
Varaktighet: 2022 juni 192022 juni 20

Publikationsserier

NamnIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Volym2022-June
ISSN (tryckt)2160-7508
ISSN (elektroniskt)2160-7516

Konferens

Konferens2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022
Land/TerritoriumUSA
OrtNew Orleans
Period2022/06/192022/06/20

Ämnesklassifikation (UKÄ)

  • Datorseende och robotik (autonoma system)

Fingeravtryck

Utforska forskningsämnen för ”Bootstrapped Representation Learning for Skeleton-Based Action Recognition”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här