BundleMAP: Anatomically localized classification, regression, and hypothesis testing in diffusion MRI

Mohammad Khatami, Tobias Schmidt-Wilcke, Pia C. Sundgren, Amin Abbasloo, Bernhard Schölkopf, Thomas Schultz

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskriftPeer review

Sammanfattning

Diffusion MRI (dMRI) provides rich information on the white matter of the human brain, enabling insight into neurological disease, normal aging, and neuroplasticity. We present BundleMAP, an approach to extracting features from dMRI data that can be used for supervised classification, regression, and hypothesis testing. Our features are based on aggregating measurements along nerve fiber bundles, enabling visualization and anatomical interpretation. The main idea behind BundleMAP is to use the ISOMAP manifold learning technique to jointly parametrize nerve fiber bundles. We combine this idea with mechanisms for outlier removal and feature selection to obtain a practical machine learning pipeline. We demonstrate that it increases accuracy of disease detection and estimation of disease activity, and that it improves the power of statistical tests.

Originalspråkengelska
Sidor (från-till)593-600
Antal sidor8
TidskriftPattern Recognition
Volym63
DOI
StatusPublished - 2017 mars 1

Ämnesklassifikation (UKÄ)

  • Radiologi och bildbehandling

Fingeravtryck

Utforska forskningsämnen för ”BundleMAP: Anatomically localized classification, regression, and hypothesis testing in diffusion MRI”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här