TY - JOUR
T1 - Butterflies fly using efficient propulsive clap mechanism owing to flexible wings
AU - Johansson, L. C.
AU - Henningsson, P.
PY - 2021
Y1 - 2021
N2 - Butterflies look like no other flying animal, with unusually short, broad and large wings relative to their body size. Previous studies have suggested butterflies use several unsteady aerodynamic mechanisms to boost force production with upstroke wing clap being a prominent feature. When the wings clap together at the end of upstroke the air between the wings is pressed out, creating a jet, pushing the animal in the opposite direction. Although viewed, for the last 50 years, as a crucial mechanism in insect flight, quantitative aerodynamic measurements of the clap in freely flying animals are lacking. Using quantitative flow measurements behind freely flying butterflies during take-off and a mechanical clapper, we provide aerodynamic performance estimates for the wing clap. We show that flexible butterfly wings, forming a cupped shape during the upstroke and clap, thrust the butterfly forwards, while the downstroke is used for weight support. We further show that flexible wings dramatically increase the useful impulse (+22%) and efficiency (+28%) of the clap compared to rigid wings. Combined, our results suggest butterflies evolved a highly effective clap, which provides a mechanistic hypothesis for their unique wing morphology. Furthermore, our findings could aid the design of man-made flapping drones, boosting propulsive performance.
AB - Butterflies look like no other flying animal, with unusually short, broad and large wings relative to their body size. Previous studies have suggested butterflies use several unsteady aerodynamic mechanisms to boost force production with upstroke wing clap being a prominent feature. When the wings clap together at the end of upstroke the air between the wings is pressed out, creating a jet, pushing the animal in the opposite direction. Although viewed, for the last 50 years, as a crucial mechanism in insect flight, quantitative aerodynamic measurements of the clap in freely flying animals are lacking. Using quantitative flow measurements behind freely flying butterflies during take-off and a mechanical clapper, we provide aerodynamic performance estimates for the wing clap. We show that flexible butterfly wings, forming a cupped shape during the upstroke and clap, thrust the butterfly forwards, while the downstroke is used for weight support. We further show that flexible wings dramatically increase the useful impulse (+22%) and efficiency (+28%) of the clap compared to rigid wings. Combined, our results suggest butterflies evolved a highly effective clap, which provides a mechanistic hypothesis for their unique wing morphology. Furthermore, our findings could aid the design of man-made flapping drones, boosting propulsive performance.
KW - aerodynamics
KW - animal flight
KW - butterflies
KW - clap and fling
KW - unsteady aerodynamics
KW - wing morphology
U2 - 10.1098/rsif.2020.0854
DO - 10.1098/rsif.2020.0854
M3 - Article
C2 - 33468023
AN - SCOPUS:85100325655
SN - 1742-5662
VL - 18
JO - Journal of the Royal Society Interface
JF - Journal of the Royal Society Interface
IS - 174
M1 - 20200854
ER -